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SUMMARY 
J 

Stat is t ical  techniques for t h e  ana lys i s  of missile in j ec t ion  

The conanonly used d i r e c t  and ad jo in t  e r r o r s  are studied i n  d e t a i l .  

methods are reviewed and extended. It i s  shown t h a t  the  determination 

of the  covariance matrix is equivalent t o  the  determination of two 

transformation matrices for  both methods, I n  general, the  ad jo in t  

method is  more e f f i c i e n t .  

could be preferable depending upon the relative dimension of t he  system 

state and the  e r r o r  source. Two examples are given t o  v e r i f y  the 

r e s u l t s .  

wide va r i e ty  of control  system problems. 

But f o r  a spec ia l  case the  d i r e c t  method 

The techniques presented can equally w e l l  be applied t o  a 

INTRODUCTION 

I n  space f l i g h t ,  the desired t r a j e c t o r y  of t he  m i s s i l e ,  c a l l ed  

t h e  reference or nominal t ra jec tory ,  i s  usua l ly  predetermined. Then a 

guidance and cont ro l  scheme i s  used t o  keep t h e  spacecraf t  f l y ing  along 

this reference t ra jec tory .  However, t he  ac tua l  t r a j ec to ry  of t h e  m i s s i l e ,  

i n  general, deviates  from t h e  reference t r a j ec to ry  due t o  a la rge  

number of system er rors .  The t r a j ec to ry  e r r o r s  a t  any time, such as 

engine burnout, are ca l led  " inject ion errors." The type of system 

e r r o r s  involved w i l l  depend upon the  hardware used i n  the  system. 

typ ica l  system e r r o r s  are l i s t e d  i n  the  following. 
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I 
I -  

1. 

2. 

3. 

4. 
5 .  

6 .  

7. 
ii. 

Gyro d r i f t s ,  

accelerometer errors  , 
platform i n i t i a l  alignment errors, 

airborne computer errors ,  

misalignment of thrust  axis, 

inexact knowledge of burnout time, 

deviation of t h rus t  from i ts  nominal value, 

misalignment of the  missile's i n i t i a l  state, etc. 

The prec ise  in jec t ion  e r rors  of the t r a j ec to ry  cannot be eval-  

uated due t o  cnce r t a i z t i e s  i n  e r ro r  sources. Therefore w e  a re  forced 

t o  sett le fo r  the  next best  description, namely, the  s t a t i s t i c a l  know- 

ledge of the in jec t ion  e r ro r s .  

Since the  s t a t i s t i c a l  knowledge of the e r r o r  sources is  obtained 

from p re f l igh t  laboratory t e s t s ,  t he  s t a t i s t i c a l  knowledge of a ce r t a in  

t r a j e c t o r y  deviation can usually be determined. 

indispensable for successful space f l i g h t  operation. 

probabi l i ty  of mission success, the  probable range of the ta rge t ,  and 

it  provides the  information required f o r  s a fe ty  precautions. 

This knowledge is  

It indica tes  t he  

Two methods are commonly used f o r  s t a t i s t i c a l  t r a j ec to ry  analysis ,  

namely, the  d i r e c t  and the adjoint  method. 3 9 4  some analys ts  

favor the fonner while others  favor the  latter. 

The purpose of t h i s  paper is:  f i r s t ,  t o  generalize these two 

methods and formulate them i n  the simple vector-matrix notation; and, 

secondly, t o  make a comparison between them. 

though Eoth methods r e su l t  i n  the  same amount of information, one 

method w i l l  be more e f f i c i e n t  than the other depending upon the  problem. 

It w i l l  be shown t h a t  even 

FORMULATION OF THE PROBLEM 

Consider a m i s s i l e  system which i s  launched a t  t i m e  t . The 

dynamics of the t r a j ec to ry  deviations due t o  system e r ro r s  i s  represented 
0 
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by a time-varying vector d i f f e ren t i a l  equation 

which is ,  i n  general, nonlinear. I n  Eq. (1) ff i s  an n-vector whose 

components are n state variables of the  t r a j ec to ry  and 5 is  an m- 

vector whose components represent m system errors .  

may represent any dynamical quant i t ies ,  such as, posi t ion deviation 

cmpnnents, velocity deviation cmponents, mass, mass rate, fuel, fuel. 
rate, e tc .  

The state var iables  

In most p rac t i ca l  cases, the t ra jec tory  deviation i s  small 

enough so tha t  Eq. (1) can be s a t i s f a c t o r i l y  approximated by i ts  l i nea r  

perturbation equation about 5 = 0 ,  which has the  form 

- x( t )  = A ( t )  - x( t )  + B(t) - e 
where A i s  an n x n matrix and B i s  an n x m matrix whose ij-elements 

are, respectively,  

aFi 
b; . ( t )  - -ae, 

J 1-J 

It i s  assumed t h a t  the random processes of the system e r r o r s  

a re  independent and s ta t ionary,  with a zero mean Gaussian d i s t r ibu t ion .  

where S = E ~2 = covariance matrix of 5. [ ‘3 
The zero mean assumption i s  val id ,  s ince i f  the random system 

e r r o r s  have non-zero means they should be corrected before launch. 

It w i l l  be shown later txat the s ta t ionary  assumption for the  

e r r o r  processes i s  p r a c t i c a l  and imposes l i t t le  i f  any l imi ta t ion  on 

our methods. 
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The assumption that the errors are Gaussianly distributed has 

both practical and theoretical justifications. In practice, the 

statistics of the individual errors can be satisfactorily approximated 

by Gaussian distributions. This is equivalent to approximating non- 

linear systems by linear systems. Furthermore, since the number of 

system errors is large and the errors are independent of one another, 
the central limit theorem asserts that the sums of these errors approaches 

a gaussian distribution in the iimit regardless of the distribution of 

the individual system errors. 

Our problem is to evaluate the statistical injection errors at 

atimet a t .  l o  

COVARLANCE MATRIX OF INJECTION ERRORS 

Finding the statistical injection errors amounts to determining 
their statistical distribution. Since the error dynamics are linear 

and the error sources are Gaussian with zero mean, the injection errors 
at any time t =-t also have a Gaussian distribution with zero mean 6 

1 0  

(5) 

where M = E [ 5 sT] = covariance matrix of injection errors. 

Eq. (5) shows that once the covariance matrix M is determined, 

the complete distribution is specified. Therefore, our problem is 

reduced to the determination of M at t > t . 1 0  

DIRECT METHOD 



1 

where G ( t , t  ) is the t r ans i t i on  matrix , a function of two variables.  
0 

Due t o  the  s ta t ionary  assumption the e r r o r  vector e i s  constant 

i n  t i m e ,  so t h a t  (6) reduces t o  

- x(t)  = G(t,to)Z(to) + P( t ) e  - (7) 

where 

Notice tha t  P( t )  i s  an n x m transformation matrix. 

In  a l l  p rac t i ca l  cases,  x ( t  ) and - e are uncorrelated. The 
0 - 

covariance matrix of the inject ion e r ro r s  i s  therefore  

T 
M(t) = E [ x(t)x (t)] 

= G ( t , t o ) M o G T ( t , t o )  + P(t)S P T (t) 
(9) 

where 

(10) 

T 
M~ = E [E(to)x (to) 

s = E [ e  eT] = covariance matrix of 

= covariance matrix of 
i n i t i a l  deviations 

system e r ro r s  

Therefore the  problem of determining M reduces t o  the  determination of 

the matrices G ( t , t  ) and P ( t ) .  
0 

A s  shown i n  (8), P ( t )  requires the knowledge of G ( t , T )  as a 

function of 7 . In  general, for a time-varying system G cannot be 

obtained ana ly t ica l ly ,  

elements of the constant matrix P ( t  ) can be obtained by applying the  

method of numerical so lu t ion  t o  (2) from t t o  t m t i m e s  as follows. 

Then (2) be- 
i 

However, f o r  a spec i f i c  time t = tl, the  

1 

0 1 

= 0 ,  except % = l. L e t  x( to)  = 0 and le t  a l l  e - 
comes 

- x = A(t)x - + kk(t) x(to)  = 0 (11) 
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I -  

where b i s  the k-th column vector of B(t). Integrat ing (11) from t 

t o  t gives 
-k 0 

1 

= k-th ~ 0 1 ~ m n  of P ( t  ) . (12) 5 = Ek 1 

O r ,  i n  expanded form, 

’nk 

I f  the system e r r o r  vector has m components, then m integrat ions a re  

needed t o  obtain the  complete matrix P ( t ) ,  

A s imilar  procedure i s  used t o  obtain the matrix G, Let - e = 0 

and let  a l l  xi(to) = 0, except x (t ) = 1. Then (2) becomes k o  

x = a  ( 14) -k - 
where i s  the k-th column vector of A ( t ) .  Obtaining the numerical 

solut ion of (14) from t t o  t , gives 
%c 

0 1 

5 = &k = k-th column of G(t t ) . (15) 1’ 0 

For n-th order t r a j ec to ry  dynamics, n integrat ions a re  required t o  obtain 

the  complete matrix G(t t ). 1’ 0 

A Speical Case 

Under t h i s  condition, the covariance matrix of the in jec t ion  e r ro r  i s  

An important spec ia l  case occurs when z(t ) = 0 .  
0 

simply 

T M ( t )  = P(t )S  P (t) * 
and the n integrat ions required f o r  G a re  no longer needed. 

ADJOINT METHOD 

5 
I n  the adjoint  method, we f i r s t  form the ad jo in t  equation of (2) 

T - = - A ( t ) &  (17) 
6 



I -  

1 -  

where - h is  an n-vector. Using equations (2) and (17), the  following 

is e a s i l y  obtained 

T = h B(t)e . d - d t  - h T X  - - 
In tegra t ing  (13) from t to tl 

0 

Let t ing  

A i ( t l )  = 0 

and noting t h a t e  i s  constant,  so (19) becanes 

m rn 

where 

i s  a row vector of dimension m. 

The vector form of (21) i s  

where 

7 



By camparing (23) t o  (7), w e  see t ha t  the matrices G and P i n  one 

equation should be iden t i ca l  to those i n  the  other .  

Eqs. (23) and ( lo) ,  once again, give t h e  same covariance lsatrix 

(9) of the in j ec t ion  e r ro r s ,  which i s  

T T = G M o G  + P S P  ( 9 )  

Therefore, again the problem reduces t o  the  determination of G and P. 

From t h e  above derivation w e  see t h a t  each row of the  matrix G 

can be obtained by using the  numerical so lu t ion  method on (17) from t 

t o  t backward i n  t i m e  with i n i t i a l  conditions (20). Then each row 

of P is  obtained by integrat ing ( 2 2 ) .  This procedure must be repeated 

n times, with n d i f f e ren t  i n i t i a l  conditions,  t o  give the  complete 

descr ipt ion of G and P. 

1 

0 

The Special Case For the same special  case considered before, 

T 
However, note t h a t  one must s t i l l  solve (17) to  ge t  &(t)  and then 

in t eg ra t e  (22) n times t o  g e t  a row of P. 
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COMPARISON 

A comparison of the two methods is  

Direct Method . 
D-1. Given: - x = pLx_ + B e  - (9 

Mo and S 

D-2. To obtain the  k-th column of 

P, compute the solution of 

(i) with the  i n i t i a l  condi-' 

t ions 

e = sik i = l---n 

x(0) = 0 

i 
( i i )  

- 
D-3. To obtain the  k-th column of 

G, compute the solution of 

(i) with the  i n i t i a l  condi- 

t ions 

e = O  

x = sik i = l---n 

- 
( i i i )  

i 

D-4. Perform D-2 m times and D-3 

n t imes  t o  give P and G. . . '  
T T D-5. M ( t l )  = G MoG + P S P 

A-1. 

A-2, 

A-3.  

A-4. 

A-5. 

shown below. 

Adjoint Method 

Given: - x = Ax - + B e  - (i) 
Mo and S 

T 
are therefore 

(ii) - A =  - A &  

To obtain the k-th row of G, 

compute the solution of (ii), 

backward i n  time with i n i t i a l  

conditions 

(iis) 

To obtain the k-th row of P, 

use the  value of h(t) ob- 

tained i n  A-2 t o  evaluate 

the in t eg ra l  

- 

Perform A-2 and 8-3 n times 

t o  give G and P. 

T T M ( t l )  = G MoG + P S P 

(VI 
Figures 1 and 2 are  diagrams which 

computations required f o r  each method. 

Several remarks can be made: 
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8 cu - 

0 
I1 
h 
0 

U 
W 

X 

1 - - - - - -  
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~- l -  

1. In both methods the determination of the covariance matrix 

of the injection errors is reduced to the determination of the trans- 

formation matrices G and P. 

2. In the direct method, m +  n numerical solutions are needed - 
to give P and G, m for P and n for G. 

3.  In the adjoint method, - n numerical solutions are needed to 
give G and to provide data for the n integrations which l e a d  to P, 

4. Since the system differential equation is more complex than 

its adjoint differential equation due to the forcing term Be, the 
complexity of each numerical solution involved in either D-2 or D-3 
is approximately equivalent to each combined solution of A-2 and A-3. 

Therefore we conclude that when x(t ) # 0, the adjoint method is 
always more efficient than the direct method. 

0 - 

5 .  For the special case x(t ) = 0, only P is needed. The 
0 - 

direct method requires only m numerical solutions while the adjoint 

method still requires n. 

upon two numbers n and m, which represent the dimension of state 2 and 
the dimension of the error source 5 respectively. 
method is preferable; but when rn- n, the adjoint method is certainly 

more efficient. 

6 .  

Therefore the choice of the method depends 

When n > m, direct 

For the special case e = 0 ,  only G is needed. Both methods 

require n numerical solutions and either method is as good as the other. 

7. We have assumed, when formulating the problem, that the 

random processes of the system errors be stationary. This assumption 

imposes little limitation on the methods. For all practical cases, the 
time-varying characteristics of error processes can be handled by 

writing 
e(t) = c(t)e' - - 

where e' is a constant q-vector; q 2 
matrix c(t) is m x q. By defining 

12 
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B'(t) = B(t) c(t) 

the forcing term of Eq. (2) becomes 

EXAMPLES 

Example 1, Consider a siqlified ermr d;wmics of a space 
vehicle given by the following set of differential equations 

z + -  " u z - - 3u 5 [ ~ ( 2  + ro)y + (Z + ro) 2 z ] = e 2  -,et] 1 2  
r r 

where Y,Z - nominal trajectory position 
y,z - position errors of Y, Z, respectively 

r =d- - radius from earth's center to vehicle 
- gravitational constant 2 

u = gore 

g0 
2 

= 9.81 meters/second 

6 r = 6.37 x 10 meters 

A1,A2 - nominal sensed acceleration along Y and Z respectively 

0 

- bias in Y- and Z-accelerometers respectively el , e2 
e3 - constant platform drift rate about x-axis 
t - time variable. 

All errors e e and e are random, uncorrelated, and have zero means. 

Their standard deviations are 
1' 2 3 

-4 2 
= 5 = 10 meter/sec 

1 2 G 

5 = 5 x radian/sec 
3 

The initial trajectory error is taken as zero. 
13 



l -  

A(t) = 

Defining the  state variables 

x = 2, 
x3 = =, 4 

- x(0) = 0 

= Y, x.2 = Y, 

t he  state equation of (31) i s  

- x = A ( t ) x  + B ( t )  5 

2 3uYCZ + ro) 
0 - - -  

5 0 
3uY u 

r r 3 5 r 

0 0 0 1 (34) 

where 5 = [ xlY x2, x3' x4 1' 

1 0 

(33) 

"I 

2 
3uY(Z + ro) 3u(z + ro> 

0 - -  
3 r 5 0 

r 5 r 
I I 

0 

0 

0 

1 -Al t  1 (35) 

Notice tha t  n = 4 and m = 3. Values of Y, Z ,  and A as functions 

of t i m e  are contained i n  Appendix 1. 
2 

Both d i r e c t  and adjoint  methods were applied t o  f ind the  t rans-  

formation and covariance matrices a t  the  f i n a l  t i m e  t = 853.6 see, w i t h  

the i n i t i a l  t i m e  being t = 0.  

DM-7040 d i g i t a l  computer. Appendix 1 contains the  computer 

programs f o r  the  two methods i n  Fortran language and a l l  the data.  The 

numerical r e s u l t s  a r e  given below. 

The computations w e r e  car r ied  out by an 
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Direct Method : 

l -  

0.34014471 06 
03 

0.20111238 05 
0.13661971 03 

0.60782003 06 - 
M =  0.35535729 04 i 0.50806797 07 

LO. 17823240 05 

0.21969810 05 0,15577654 09 
0.15434290 03 -0.91316429 06 
0.42568219 06 -0.13046488 10 
o.iiia5155 04 -0.45767998 07 1 
n0.35535729 04 -0.50806797 07 -0.17823240 05 
0.20852953 02 0,29784779 05 0.10448703 03 
0.29784779 05 0.42554526 08 0.14928269 06 
0.10448703 03 0.14928269 06 0.52369010 03 

Adjoint Method: 

1 06 0.21823815 05 0.15780548 09 
03 0.15387262 03 -0.91028112 06 
05 0.42534883 06 -0.12998004 10 
03 0.11184063 04 -0.45736717 07 

06 -0.35885207 04 -0.51277296 07 -0.18043053 05 
04 0.20721517 02 0.29580402 05 0.10408595 03 
07 0,29580402 05 0.42238837 08 0.14862628 06 
05 0.10408595 03 0.14862629 06 0.52297451 03 

I -  

Note tha t  t he  following notation i s  being used above: 

6 0.34014471 06 = 0.34014471 x 10 . 
Computer t i m e  (including loading time and execution t i m e ) :  

d i r e c t  method - 0.40 minute 

ad jo in t  method - 0.41 minute. 

Comparing the  numericalvalues, w e  see t h a t  both methods led t o  

t h e  same resu l t s .  However, the d i r e c t  method i s  more e f f i c i e n t  i n  t h i s  

case s ince i t  consumed less time. This i s  what we expected, s ince here 

- x(0) = 0 and n > m. 

example due t o  t h e  small difference between n and m. 

The difference i n  time i s  no t  very much i n  t h i s  

Example 2. Consider a second order system with six system 

e r ro r s .  

- x = A x f B =  - 
15 



where 5 = cXl, x 2 ~ ~ ,  e = [el, e2y e3y e4y e5y e 6 1 ~  
A =  

- 
-I '3 0 

0 - 

Assume - x(0) = 0 and assume that the system errors are independent with 

standard deviations 

0- = Joel 
1 e 

0- =fi 
e4 

= JG 
e2 

%5 = io.o6 

r = JTiK 
e3 

The problem is to evaluate the transformation matrix and covariance 

matrix by both methods. 

Notice, the system is time-invariant, so the solution can easily 

be obtained analytically. However, to demonstrate the main theme of 

this paper, we still use the numerical solution technique and let the 

digital computer carry out the computations. In this system m = 6 
and n = 2. 

The result, for the direct method, is 
- 
0.49000891 02 0.99999254 0 5  
0.50000862 02 0. 
0.99001753 02 0.99999254 00 
0.49000891 02 0.99999254 00 
0.50000862 02 0. 

0.99999254 00 0.99001753 02 - - 
M = [  0.14854030 04 0.19650208 021 , 

0.34999478 00 0.19650208 02 

and for the adjoint method 
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- 
0.48985892 02 0 99994580 05 
0~50000000 02 0. 
0.98985891 02 0.99994580 00 
0,48985892 02 0.99994580 00 
0.50000000 02 0. 

0.99994580 00 0.98985891 02 - - 

0.19643997 02 
0.34996206 00 1 0 . 14847 956 04 M =[ 0,19643997 02 

The computer times are: 

direct method - 12.69 minutes 

adjoint method - 2.61 minutes, 

Here, as we expected, the adjoint method is much faster. Appendix 2 

contains the complete program for the problem. 

CONCLUSION 

The techniques for statistical analysis of the injection errors 

of a missile have been studied in detail. Two commonly used methods, 

namely, the direct and adjoint methods, have been reviewed and extended, 
It has been demonstrated that, under the assumption of Gaussian random 
processes and linear error dynamics, all the necessary information is 

contained in covariance matrix of the injection errors. It has further 
been shown that for both direct and adjoint methods, the determination 

of the covariance matrix is equivalent to the determination of two 

transformation matrices. 

A comparison of the twomethods has revealed that, in general, 

the adjoint method is more efficient. But for the special case, where 

the initial state deviation is zero, the direct method could be pre- 

ferable depending upon the relative dimension of the system state and 
the error sources. 

Several remarks have been made to emphasize the main points and 

two examples have been given to verify the theoretical conclusion. 
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The techniques presented here are not l imited t o  the in j ec t ion  

e r r o r s  of a m i s s i l e ;  

of control  system problems. 

they can be applied equally w e l l  t o  a wide va r i e ty  
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APPENOIX I 

DATA AN0 PROGRAMNlNG FOR EXAMPLE 1 

TIME RECORD OF Y e  ZI A 1  AN0 A2 

TIHE v z A 1  A2 

+~00000000M+00 +~000000000E+00 +~00000000OE+00 +~OOOOOOOOOE+OO +.120799500E*02 
+.80000000lE+Ol +.327080001€+04 +~774000002E+02 +~000000000E+00 +.125616170E+O2 
+.1600OOOOOE+02 +~654130001E+O4 +.3306OOOOOE+03 +.724415412E-01 +.13002412OE+O2 
+~240000000E+02 +o985730001€+04 +.793200002E+03 +~434657900E-00 +.lM702070€+02 
+.320000000E+02 +.13121*000E+05 +~150270000E+O4 +~100600650E+01 +.143013510€+02 
+.40000000bE+02 +.164903000E+05 +.249970000E+04 +.107102000E+O1 +.1+960950OE+02 
+. 48000O000E+02 +. 1997W000E+05 +. 382670000€+04 +. 30919012 1E+01 +. 1%25%0M+~ 
+.56000GGGiE+Oi i.Z56652000E+05 +~55256030LE+O4 *.458397UiE+Ol +.1615915H)E*o2 
+.640000001E+02 +.276427000E+05 +.762870001E+04 +.614810531E+01 +.162030730E+02 
+.713540002€+02 +.316410000E+05 +~992180001E+04 +.756227761E+01 +~159052600E+02 

+~780000001E+O2 +.356041001€+05 +~122832000E+05 +.938704022E+Ol +.165115960E+02 
+.82098OOOZE+02 +.382483001€+05 +.138857000€+05 +.106870600E+02 +.170085680E+02 
+~BB000000iE+02 *.423758001€+05 +~16409OOOOE+05 +.126661420E+02 +.176696090E+02 
+.W008001€+02 +.486854000E+05 +*202724000€+05 +.154503620E+02 +.lM02993OE+02 
+~104000000E+03 +.559806001E+05 +.246898000E+05 +.183388170E+02 +.190295710E+02 
+.112000000E+03 +.644447001€+05 +.297017000E+05 +.213673500E+O2 +.196411870€+02 
+~ltO0OOOOOE+03 +.742712002€+05 +.353485000E+05 +.246218340E+02 +.203317860€+02 
+~128000000E+03 **856682002E+O5 +.416762000E+OS +.282318200€+02 +.211937300t+02 
+~136000000E+03 +.988667002€+05 +.487418001€+05 +.323945421€+02 +.223300760€+02 
+.13851700M+03 +.103433100E+06 +.511287000E+05 +.330601490E+02 +.227771100E+O2 
+~144000000E+03 +.113065900E+06 +.564438001E+05 +.160718450€+02 +.113493050E+02 
+.144517000E+03 +.114876600E+06 +.569476001E+OS *.l70761430E+02 *~ll4070160€+02 
+.14451700OE+03 +.11*876600E+06 +.569476001E+05 -.266009220~01 -.166971780€+1 
+.15001700M+03 +.12565110OE+06 +.621644001€+05 -.135619980E-01 -.014433102E-o2 
+. 1500 17OOOE+03 + 0 12565 1100E+06 + 62 1644001 E+05 -0 13567977OE-01 -0 0 16433 1 0 2 H 2  
+.150D17000€+03 +.125651100E+06 +.621644001E+05 +.4%544971€+03 +.410229081E+Ol 
+~160017000E+O3 +o145476*00€+06 +r711239001€+05 +~51087l041€+01 +.4+0107741E+O1 
+~160017OOOE+03 +.145476400€+06 +.711239001E+O5 +.511245431€+01 +.**0430270E+01 
+.172000000E+03 +.169878900E+06 +.811763001E+05 +.529025981E+01 +.4+0034091E+01 
+~220000000E+03 +~275100500E+06 +.1140408OOE+06 +.607381949E+Ol +.435132501E+01 
+.244000000E+03 +.332519900€+06 +.126059800E+06 +.651405425€+01 +.43023513lE+01 

+~2920OOOOOE+03 +.458015300€+06 +.141261600E+06 +.751065367E+01 +~413803071E+Ol 

+~34O0OOOOOE+03 +.599337201€+06 +.144482300E+06 +.869529904E+Ol +~305736490€+01 
+.364000000€+03 +.676629501€+06 +.141451OOOE+06 +.937399866E+01 +~365727650E+01 
+~3B8000000E+03 +.758771501€+06 +.135197800E+06 +.lOl212867E+OZ +.340690530E+Ol 
+~4120000OOE+03 +.846217602€+06 +.125589900E+06 +*109477198€+02 +.309594860E+01 
+~4360OOOOOE+03 +~939103700E+06 +.112458200€+06 +.118667132E+02 +.27116529M+Ol 
+.460000000E+03 +.103815360€+07 +*955905001E+05 +.128944549E+02 +.223801900€+01 
+.484000000E+03 +.114378920€+07 +.747227002E+05 +o140537226E+02 +.165462470E+01 

+.532000001€+03 +.137723020€+07 +.195985000E+05 +.168970932E+02 +~420068001E-01 
+.55600OOOOE+O3 +.150648250E+07 -~155671000€+05 +.1868236046+02 -~107111450E+01 
+~580000001E+03 +.164527210E+07 -.565997000E+05 +~2081916OZE+OZ -.2478973606+01 
+.604000001E+03 +~179471800E+O7 -~1042968OOE+06 +*234469741E+02 -.~29040751E+Ol 
+.628000001€+03 +.195621670€+07 -.159686500E+06 +-267958717E+02 -~666325901€+01 
+*639915002E+O3 +.20414094OE+07 -.190446800€+06 +.288409837E+Ot -~817465852E+01 

+.651000001E+03 +.2122579lOE+07 -.220835200€+06 +o704132551E+01 -.222347550E*Ol 
+.675000001€+03 +.229998250€+07 -.291349401E+06 +.717816951E+01 -.276609420E+01 
+~69900000OE+O3 +.247959870E+O7 -.3685530OOE+06 +-729599551€+01 -.33800+4?0€+01 
+.723000001E+03 +.26613390OE+O? -.452741900E+06 +.739434251E+01 -.4030125906+01 
+~747000001E+03 +*284510480€+07 -.544227400€+06 +.747341411€+01 -.471222231€+01 
+~771000001E+03 +.303077950€+07 -.643336801€+06 +.753407402E+01 -.543766181E+Ol 
+.795000000E+03 +.321823771E+07 -.750414201E+06 +.757780721E+Ol -~62104284lE+01 
+~819000001E+03 +.340734230€+07 -.865822500E+06 +.760664521€+01 -*703643602€+01 
+~631000000E+03 +.350246650E+07 -.926769802€+06 +.761624471E*Ol -.747191681E+01 
+.043000000€+03 +*359794680E+OT -.989945801E+Ob +.762309291E+01 -.79240918lE+Ol 
+.053633000€+03 +.368282860€+07 -.104782650E+OI +.762716282E+Ol -.833993071E+01 

+.720006001E+02 +.320104000€+05 +.101390000E+05 +.771608391E+OI +.159357100€+02 

+.26800000M+03 +.393416000€+06 +.135139000E+06 +.6991526726+01 +.423283071E+01 

+.31600000M+O3 +,526565201€+06 +.144393900€+06 +.807656900€+01 +.401557851E+01 

+.508000001E+03 +.i25659120E+07 +.495272000E+05 +.153741100€+02 +.934814501E+00 

+.639915002€+03 +.204140940€+07 -.1904468OOE+06 +.697197993E+Ol -.197613050E+01 



A PROGRAM FOR DIRECT METHOD 

SIBFTC MAIN 
C 

500 

10 
C 

0 

7 
20 

C 



21 



D ( I * J j  * 000 
DO 80 K = 1 0 3  

D(1.J) D ( 1 r J J )  + C(frK)+ P(3.K) 
PRINT 2010 tCP(IrJ1r J se 1 0 3 1 0  I l e 4 1  
PRINT 2020 ( ( O l I 0 3 ) *  J = 1 0 4 1 0  I = 1 * 4 1  
PRXNT 2@3:tZ€R?f+J)r J = i o 3 1 0  I t r 3 )  

80 CC)MTfNUE 

201 FORllrlAT(lHlr38H TRANSFORM MATRIX P BY D I W C T  METHOD I 
1 ///3~2X.E1508r3X) 1 

1 23H ERROR BY DIRECT METHOD///4(EXrElSo8~3XJ)~ 

1 6H ERROR///3(2XrEI508r3X)) 

202 FORMAT(////38H COVARIENCE MATRIX OF STATE VECTOR 0 

203 FORMAT(////38H COVARIENCE MATRIX O F  SOURCE VfCTOR 0 

CALL EXIT 
END 

D A T A  CARDS 
SENTRY 

+01E-07 +oOE+OO +oOE+OO +oOf+OO + O  1E-07 
+oOE+OO +oOE+OC +oOE+00+~25E-10 

E I BSYS 

NOTE-1 DATA CARDS INCLUDES THE TIME RECORD O F  Y e  21 A 1  A N D  
A 2  WHICH IS LISTED IN THE BEGINNING O F  APPENDIX-Io 
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A PROGRAM FOR ADJOINT METHOD 

23 



24 



DO 80 3 = 144  
D(1131 * 000 
DO 80 K = 1*3  
D(1.J) D(IrJ9 + C(f.K9* Q ( J + K )  

PRINT 201r f(Q<113)1 J = l r 3 ) e  I 2: 114) 
m t N T  2320 CtDC?+>?+ 9 = 1,4$, f = : e 4 9  
PRINT 2 0 3 1 ( f E R ( I t d ) r  3 = 1+391 I = f r 3 9  

80 CONTINUE 

201 FORPlATflHl+38l- l  TRANSFORM MATRIX Q B Y  ADJOINT METHOD / 
1 ///3(2XtEl5e8+3X)) 

202 f O R M A f ( / / / / 3 8 H  COVARIENCE M A T R I X  OF S T A T E  VECTOR 
1 24H ERROR BY A D J O I N T  METHOD///~(~XIE~SOS~~X)) 

203 FORMAf(////38H COVARIENCE M A T R I X  O F  SOURCE VECTOR 
1 bH E R R O R / / / ~ ( ~ X I E I S ~ B ~ ~ X ~ ~  

CALL E X I T  
END 

D A T A  CARDS 
SENTRY 

+.O€+OO +rQE+OO +.OE+bO+.25€-10 
+otE-O? +eO&+00 +oOE+OO +oOE+UO +elE-Of 

SfBSYS 

NOTE-1 D A T A  CARDS INCLUDES THE T I M E  RECORD OF Y e  ZI A 1  AND 
A2-WHfCk IS L I S T E D  I N  THE BEGINNING OF A P P E N D I X l t o  

25 
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APPENDIX 1 1  

PROGRAMMING FOR EXAMPLE I 1  

A PROGRAM FOR D I R E C T  METHOD 

S I B F T C  M A I N  
C * * * * * * * * * # 

D I M E N S I O N  E (b ) *P(2*6 )  
DO 10 I = 1 * 6  
DO 20 J = 196 
I F (  1-J) 1 4 2 -  1 

GO TO 20 
2 E t J )  = 1.0 

1 E ( 3 )  = 0.0 
20 CONTINUE 

T = 000 
x l =  0.0 
x2= 0.0 
H = 00001 

50 T = T + H  
A K l  = (Et21 + E ( 3 )  + E ( 5 )  + E t 6 1  + X 2 ) * H  
BK1 = (E (1 )  + E ( 3 )  + E ( 4 )  + E ( 6 )  - X 2 ) * H  
AK2  = ( E ( 2 )  + E ( 3 )  + E ( 5 )  + E ( 6 )  + X 2  + OoS*BKl)*H 
BK2 = (E (1 )  + E ( 3 )  + E ( 4 )  + E ( 6 )  - X 2  - O.S*BKl)*H 
A K 3  = (Et21 + E ( 3 )  + E ( 5 )  + E ( 6 )  + X 2  + 0o5*BK2)*H 
BK3 = (Et11 + E(3 )  + E ( 4 )  + E ( 6 )  - X 2  - Oof*BK2)*H 
A K 4  = ( E ( 2 )  + E ( 3 )  + Et51 + E 1 6 1  + X 2  + BK3)*H 
BK4 = ( E ( 1 )  + E ( > )  + E ( 4 )  + E ( 6 )  - X 2  - BK3)*H 
X 1  = X 1  + t A K 1  + 2 o * A K 2  + 2 o * A K 3  + AK4 jy6 .0  
X 2  = X 2  + ( B K I  + 2o*BK2 + 2o*BK3 + B K 4 3 / 6 0 0  
IF (T-49.9999 156 r 50 

51 P ( 1 r I )  = W l  
P ( 2 r f )  = x2 

PRINT 1001 ( P ( 1 r I ) e  1 = 1 * 6 ) r  ( P 1 2 * l ) r I = I r b )  

5 1 

10 CONTINUE 

100 F O R M A T ( 1 H f * 3 8 H  TRANSFORM M A T R I X  B Y  D I R E C T  METHOD 1 

1 / / 6 ( 2 X r E 1 5 0 8 * 3 X ) )  
C COVARIENCF M A T R I X  OF STATE VECTOR ERROR 

D I  MENS ION 3 (212 1 r C  ( 2 - 6  1 r E R ( 6 * 6 )  
READ 200. ( (ER ( I * J )  I=l *6 j 

200 FORMAT ( 1 2 F S o O j  
DO 70 I = 1 * 2  
DO 70 J = 1.6 
C ( I * J )  = 000 
DO 70 K = l a 6  

J=l r 6  1 

26 



70 

80 

300 

C ( 1 . J )  e C ( 1 + J )  4- P ( f + K ) + E R ( K q J )  
CONT I NU€ 
DO 80 I = l e 2  
DO 80 J = 1.2 
D ( I * J )  f 0.0 
DO 80 K 1.6 
D ( 1 . J )  = D(1 .J )  + C ( I * K ) W ( 3 r K I  
CONTINUE 
PRINT 306. <<D(I.J113rtr2)rIrl*2) 
fORMAT(/// /38H COVARIENCE MATRIX O F  STATE VECTOR * 
CALL E X I T  
END 

1 23H ERROR BY DfRECT METHOD///2(2X*E15.8,3X)) 

SENTRY 
0.1 000 000 0.0 0.0 0.0 0.0 0.65 0.0 0.0 0.0 0.0 
0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 
0.0 0.0 0.0 0.0 0.06 000 0.0 0.0 000 0.0 0 0 0  0.04 

SIBSYS 
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A PROGRAM FOR A 0 3 0 1 N T  METHOD 

qIf3FTC M A I N  
C 

12 

11 
50 

75 

82 

81 

60 

100 

c 

200 

* * 

28 
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I :  

70 CONTINUE 
DO 80 1 = 1 4 2  
DO 80 J = l r 2  
D(I.3) 000  
00 80 K = l e 6  
D t t r J J )  = D(I931 + C I I r K I + Q ( J e K )  

PRINT 3 0 0 e  ((D(Ir3)rJr!e2~rI=re2) 
RO ColJTtWE 

300 FOFmAT<////38H COVARffNCE HATRXX O F  STATE VECTOR e 
1 24H ERROR BY ADJOINT MEfHOD////6~2XrEl508r3X)~ 

CALL E X I T  
END 

SENTRY 
0 0 1  000 000 0.0 0.0 0.0 000 0005 000 0 0 0  000 000 

000 0.0 0.01 0.0 0.0 0.0 000 000 0.0 0.2 0.0 000 
0 0 0  0.0 600 0 0 0  0 0 0 6  0.0 000 0.0 0 0 0  0.0 0.0 0.04 

L I BSYS 
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